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Thanks to my (co-)authors

■ Jeroen Rombouts, Professor at ESSEC Business School

■ Arnaud Dufays, Postdoc at CREST (Paris)

of the paper supporting this talk:

Marginal likelihood for Markov-switching and change-point
GARCH models,
forthcoming in the Journal of Econometrics.
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Motivation

■ "Simple" GARCH models, like

yt = ǫtσt, ǫt ∼ N(0, 1),

σ2
t = ω + αy2

t−1 + βσ2
t−1,

estimated on long financial return series imply a strong
persistence (α + β < & ≈ 1) of the conditional variance.

■ That spuriously strong persistence may be caused by
changes of the unconditional variance level.

■ Source of problem: the parameters of the GARCH equation
are fixed throughout the entire sample.

⇒Need for more flexible specifications.
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S&P 500 index returns
Sample: May 20, 1999 to April 25, 2011 (3000 observations)
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More flexible GARCH models

■ Component models: Ding and Granger (1996); Engle and
Lee (1999); Bauwens and Storti (2007) ...

■ Smooth transition models: Gonzales-Rivera (1996) ...

■ Smoothly changing level models: Dalhaus and Subba Rao
(2006), Engle and Rangel (2008), Baillie and Morana (2009),
Amado and Terasvirta (2008, 2011) ...

■ Mixture, Change-point (CP), and Markov-switching (MS)
models.

See survey in Chapter 1 of Handbook of Volatility Models and
Their Applications, Wiley (April 2012).
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MS- and CP-GARCH models

■ Hamilton and Susmel (1994), Cai (1994), Gray (1996),
Francq and Zakoian (2001, 2008), Haas et al. (2004),
Bauwens, Preminger and Rombouts (2010)...

■ Prototype model:

yt = ǫtσt, ǫt ∼ N(0, 1),

σ2
t = ωst

+ αst
y2

t−1 + βst
σ2

t−1,

with st a discrete r.v. taking values in {1, 2, . . . , K + 1}.

■ NB: σ2
t depends on St = (s1, s2, . . . , st−1, st).

We should write:

σ2
t (St) = ωst

+ αst
y2

t−1 + βst
σ2

t−1(St−1).
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MS- and CP-GARCH models

{st} is a first-order Markovian process with transition matrix P .

Markov-switching case (recurrent regimes):

PM =









p11 p12 ... ... p1K+1

p21 p22 p23 ... p2K+1

... ... ... ... ...

pK1 pK2 pK3 ... pK+1K+1









Change-point case:

PC =










p11 1 − p11 0 ... ... 0

0 p22 1 − p22 ... ... 0

... ... ... ... ... ...

0 0 0 ... pKK 1 − pKK

0 0 0 ... 0 1









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Which model: CP or MS?

■ CP more robust to misspecification of the number of regimes.

Intuition: CP with enough change points can mimic MS with
small number of regimes.

■ MS more parsimonious in GARCH parameters, less in P .

■ Identification restrictions needed (label switching) in MS, not
in CP.

■ CP model inherently non-stationary, contrary to MS.

■ Empirical issue to be decided by a model choice criterion or
a statistical test.
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ML estimation is impracticable

■ The likelihood function for observation t depends on the
unobservable state variables st from 1 to t. They must be
integrated out by summation over all possible past paths of
St (path dependence problem).

■ With K + 1 regimes and t observations, there are (K + 1)t

terms in the summation.

■ Standard ML estimation is impracticable for sample sizes
typically used in financial econometrics.
ML with simulation: forthcoming paper by M. Augustyniak in
CSDA.

■ This problem is less important in CP models.

■ It does not arise in the ARCH case:
Hamilton and Susmel (JBES, 1994), Cai (JBES, 1994).
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Path-dependence with two states

NB: σ2
t|1,2,...t

= σ2
t (St)

ր σ2
2|1,1 = ω1 + β1σ

2
1|1 + α1u

2
1

σ2
1|1 = ω1 + β1σ

2
0 + α1u

2
0

ր ց σ2
2|1,2 = ω2 + β2σ

2
1|1 + α2u

2
1

σ2
0 , u0

ց ր σ2
2|2,1 = ω1 + β1σ

2
1|2 + α1u

2
1

σ2
1|2 = ω2 + β2σ

2
0 + α2u

2
0

ց σ2
2|2,2 = ω2 + β2σ

2
1|2 + α2u

2
1
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Bayesian estimation is practicable

■ Bayesian estimation is feasible by MCMC methods.

■ Bauwens, Preminger and Rombouts (EJ, 2010): algorithm
for MS-GARCH model. Applicable to CP-GARCH. Problems:

-Not efficient numerically (does not mix well);

-Cannot compute the marginal likelihood (for model choice).

■ He and Maheu (CSDA, 2010): CP-GARCH model.
Problems:

-Not applicable to MS-GARCH;

-Numerically demanding;

-May not converge in some cases.
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Our contribution

■ New and more efficient algorithm applicable to CP- and
MS-GARCH models.

■ Able to compute the marginal likelihood and perform model
choice:

Number of regimes?

CP or MS?

■ Applied to eleven time series, the MS-GARCH model
preferred to CP-GARCH in all cases.

■ C++ code available at
https://sites.google.com/site/websiteofarnauddufays/
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S&P 500 index: MS-GARCH
Returns with switches of 2 regime MS-GARCH model
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S&P 500 index: CP-GARCH
Returns with switches of 3 regime CP-GARCH model
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Model and parameters

■ Prototype model:

yt = ǫtσt, ǫt ∼ N(0, 1),

σ2
t = ωst

+ αst
y2

t−1 + βst
σ2

t−1,

with st a discrete r.v. taking values in {1, 2, . . . , K + 1}.

■ Parameters: GARCH, transition matrix, and states:

θ = (ω1, . . . , ωK+1, α1, . . . , αK+1, β1, . . . , βK+1),

π: the non-redundant parameters of PM or PC ,

ST = (s1s2 . . . sT ): treated as parameters.

■ We proceed assuming a know value of K, the number of
breaks.
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Data augmentation

■ By treating ST as additional parameters, the problem is
tractable.

■ Intuition: if ST is observed, the likelihood function/data
density is easy to compute (no need to integrate all possible
past paths):

f(YT |θ, ST , π) ∝

T∏

t=1

(σ−1
t ) exp−

( y2
t

2σ2
t

)

,

where YT = (y1, y2, . . . , yT ).

■ Furthermore, inference about ST is useful as it provides
indirectly estimates of break dates.
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Posterior distribution

■ Joint posterior:

p(θ, π, ST |YT ) ∝ f(YT |θ, ST , π)
︸ ︷︷ ︸

data density

p(ST |π)p(π)p(θ)
︸ ︷︷ ︸

prior densities

■ π(ST |π) results from the Markov chain assumption:

p(ST |π) =
∏T

t=1 p(st|st−1, π) where p(st|st−1, π) is the
transition probability to move from state st−1 to state st.

■ Prior on ln[θ ./(1 − θ)] : N(µ, 8I3(K+1)), µ = (µω, µα, µβ)′,
µω = −4ιK+1, µα = ln( 0.25

0.75)ιK+1, µβ = ln( 0.75
0.25 )ιK+1.

■ Prior on π chosen to facilitate posterior simulation: Dirichlet
distribution.
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MCMC algorithm for posterior distribution

■ It is a Gibbs sampling algorithm with three blocks:

1. Sample ST from p(ST |θ, π, YT ) → difficult part
2. Sample π from p(π|ST , YT , θ) → analytically since Dirichlet
3. Sample θ from p(θ|ST , π, YT ) → numerically but not

difficult (we use a Metropolis-Hastings step)

■ In Bauwens, Preminger and Rombouts (EJ, 2010), sampling
ST is broken into univariate sampling of each state variable
given the other states (Gibbs sampling). This is easy
numerically (discrete distributions), but numerically heavy
and not mixing well.

■ Contribution of this paper: a better algorithm, that samples
ST in one shot, thus mixing well.
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Sampling ST

■ Notations: St = (s1, s2, . . . , st), St+1 = (st+1, st+2, . . . , sT ).

■ We factorize p(ST |θ, π, YT ) sequentially from the last date to
the first one:

p(sT |YT , θ, π)p(sT−1|sT , YT , θ, π) . . . p(st|S
t+1, YT , θ, π) . . . p(s1|S

2, YT , θ, π)

■ Sampling is done sequentially from each univariate
distribution from t = T till t = 1 (forward filtering-backward
sampling algorithm). Computing p(st|S

t+1, YT , θ, π) is far
from trivial.

■ We adopt and adapt an algorithm of Andrieu, Doucet and
Hollenstein (ADH): Particle Markov chain Monte Carlo
methods (JRSS B, 2010).
ADH provide a way to incorporate a sequential Monte Carlo
(SMC) algorithm inside a MCMC one.
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Computing st|S
t+1, YT , θ, π

p(st|S
t+1

, YT , θ, π) =
p(st|Yt, θ, π)f(Y t+1, St+1|st, Yt, θ, π)f(Yt|θ, π)

f(St+1, YT |θ, π)

∝ p(st|Yt, θ, π)f(Y t+1
, S

t+1|st, Yt, θ, π)

∝ p(st|Yt, θ, π)f(Y t+1|St
, Yt, θ, π)p(st+1|st, π)

p(st|Yt, θ, π) difficult to evaluate because of the path dependence, but
evaluated sequentially by a conditional SMC.

f(Y t+1|St, Yt, θ, π) computationally demanding, but can be well
approximated by considering the path of each particle.

We use 150 particles for CP, and 250 for MS. We tried different values.
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SMC and PMCMC

■ A standard SMC algorithm does not keep p(θ, π, ST |YT )
invariant, but the conditional SMC does the job.

■ We adapt an algorithm of ADH by including

◆ the auxiliary particle filter of Pitt and Shephard (JASA,
1999) in the conditional SMC;

◆ the backward sampling, as Godsill, Doucet and West
(JASA, 2004).

■ We consider also three other variants of our algorithm, see
details in the paper.
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Selection of number of breaks

■ Use marginal likelihood as model choice criterion.

■ Apply Bayesian inference conditional on K, as described
previously, for K = 1, 2, . . . , Kmax.

■ Select value of K corresponding to highest MLL (marginal
log likelihood).
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Global formula/1

■ The marginal likelihood/data density is defined by

f(YT ) =

∫

f(YT |λ)p(λ)dλ.

■ For any function t(λ) and density function q(λ),

f(YT ) = A1/A2

where

A1 =

∫

t(λ)f(YT |λ)p(λ)q(λ)dλ

A2 =

∫

t(λ)q(λ)p(λ|YT )dλ

Proof: substitute in A2 the formula of p(λ|YT ) provided by
Bayes theorem.
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Global formula/2

■ Meng and Wong (Statistica Sinica, 1996) propose to
estimate f(YT ) by Â1/Â2, with

Â2 =
1

G2

G2∑

j=1

t(λj)q(λj)

where {λj}G2

j=1 is a set of G2 posterior draws, and

Â1 =
1

G1

G1∑

i=1

t(λi)f(YT |λ
i)p(λi)

where {λi}G1

i=1 is a set of G1 draws from q(λ).

■ For t(λ) = 1/q(λ), this is importance sampling.

For t(λ) = 1/p(λ|YT ), it is reciprocal importance sampling.
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Global formula/3

■ We follow Meng and Wong who obtain
t(λ) = [p(λ|YT ) + q(λ)]−1 as an asymptotically optimal
choice which minimizes the expected relative error of the
estimator in the case of i.i.d draws from p(λ|YT ) and q(λ).

■ In our case, λ = (θ, π).

■ We specify q(θ, π) as q(θ)q(π). The two proposal
distributions are respectively mixtures of normal and beta
distributions constructed with posterior draws in order to
cover the posterior support.

■ A similar mixture of normal distributions is used as proposal
for sampling θ in step 3 (MH step) of the Gibbs algorithm for
the posterior distribution.
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Local formula/1

■ Bayes theorem:

p(θ, π|YT ) =
f(YT |θ, π)p(θ, π)

f(YT )
.

■ Hence

f(YT ) =
f(YT |θ, π)p(θ, π)

p(θ, π|YT )
,

which must hold for any (θ, π) in the posterior support.

■ Chib (1995) proposed to use the latter to compute f(YT ) by
evaluating the right-hand side at a high posterior density
point, say (θ∗, π∗). He showed how to do this using the output
of a Gibbs sampler generating draws from the posterior of
(θ, π), in the presence of latent variables like ST in our case.
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Local formula/2

■ π∗ and θ∗ high density point.

■ Prior p(θ∗, π∗) = p(θ∗)p(π∗) easily computed.

■ We have eliminated ST ...

■ Data density f(YT |θ
∗, π∗) computed by PMCMC sampler

since it integrates out the state vector ST .

■ Posterior p(θ∗, π∗|YT ) computed with an additional PMCMC
sampler (to integrate out the state vector).

■ Finally, in logarithm: MLL (marginal log likelihood):

log f(YT ) = log p(θ∗, π∗) + log f(YT |θ
∗, π∗) − log p(θ∗, π∗|YT ).
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CP-GARCH DGP (3 regimes) and estimates

DGP values Estimates

Regime 1 2 3 1 2 3

ω 0.20 0.70 0.40 0.34 0.78 0.32
(0.14) (0.23) (0.07)

α 0.10 0.20 0.20 0.15 0.17 0.17
(0.03) (0.04) (0.05)

β 0.80 0.70 0.40 0.68 0.70 0.52
(0.12) (0.06) (0.09)

Break 1000 2000 1046 2010
(31.7) (8.5)

Estimates: posterior means and (standard deviations)
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CP-GARCH DGP: MLL

Marginal log-likelihood values for simulated data of CP-GARCH

Regimes 1 2 3 4

Change-Point

Global -5463.22 -5451.42 -5438.43 -5442.10
Local -5463.00 -5450.28 -5438.09 -5439.78

Markov-switching

Global -5463.29 -5448.95 -5442.05 -5445.63
Local -5462.99 -5448.14 -5441.07 -5443.66



Introduction

Bayesian Inference

Marginal Likelihood

Simulations

Empirics

Varia

Extensions

- p. 30/44

MS-GARCH DGP: MLL

The parameter values of the 2-regime MS-GARCH DGP are
the same as for Regimes 1 and 2 of the CP-DGP above.

Marginal log-likelihood values for 3000 simulated data of
MS-GARCH

Regimes 1 2 3 4

Change-Point

Global -5879.88 -5862.75 -5848.05 -5851.07
Local -5879.56 -5859.22 -5846.93 -5850.99

Markov-switching

Global -5879.89 -5843.55 -5849.04 -
Local -5879.67 -5843.05 -5849.48 -
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S&P 500 index: model choice

Marginal log-likelihood values for S&P 500 data

Regimes 1 2 3 4

Change-Point

Global -4505.33 -4505.83 -4503.05 -4519.23
Local -4504.95 -4505.93 -4502.97 -4516.16

Markov-switching

Global -4505.31 -4497.99 -4502.74 -
Local -4505.08 -4496.04 -4497.73 -

Estimates of preferred models on slide 35.
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S&P 500 index: MS model
Returns with switches from the 2 regime MS-GARCH model
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S&P 500 index: vol. levels
Unconditional volatility
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The spline-GARCH (Engle and Rangel, 2008)

yt/τt = gtǫt, ǫt ∼ N(0, 1),

g2
t = (1 − α − β) + α(yt−1/τt)

2 + βg2
t−1

τ2
t = γ exp

(

λ0t +

k∑

i=1

λi[(t − ti−1)+]2

)

,

where (α, β, γ, λ0, . . . , λk) are parameters,
(t − ti)+ = min(0, t − ti) and {t0 = 0, t1, t2, . . . , tk = T}.

We used the BIC to determine the number of knots.
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Estimates for S&P 500 daily returns

Sample period: May 20, 1999 to April 25, 2011 (T = 3000)

GARCH CP-GARCH MS-GARCH
Regime Regime

Parameter 1 2 3 1 2
σ2 1.67 1.95 0.45 2.75 2.32 0.46
α 0.075 0.085 0.023 0.098 0.089 0.031
β 0.915 0.868 0.931 0.890 0.891 0.901

α + β 0.990 0.953 0.954 0.978 0.980 0.932

σ2 = ω/(1 − α − β) is the (local) unconditional variance.
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Model choice for 11 series

log-BF: log of Bayes factors wrt GARCH(1,1) model

Series Spline-GARCH CP-GARCH MS-GARCH

knots log-BF K+1 log-BF K+1 log-BF nswitch

S&P 500 3 5.21 3 2.28 2 7.34 3

DJIA 3 2.99 1 0 2 4.7 3

NASDAQ 3 3.20 1 0 2 1.94 7

NYSE 3 2.40 1 0 2 3.91 13

BAC 4 16.62 3 50.12 3 79.49 11

BA 4 9.10 2 8.9 2 11.48 6

JPM 3 8.82 3 5.17 3 7.22 9

MRK 5 48.78 5 215.39 3 335.23 56

PG 4 16.34 3 24.23 2 33.6 9

Metals 2 6.66 2 11.33 2 14.68 5

Yen/Dollar 1 -3.34 1 0 2 3.05 7
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Rule of thumb for log-BF

Kass and Raftery (JASA, 1995):

■ If log-BF < 1: evidence (in favor of model having highest
MLL) not worth than a bare mention.

■ If 1 < log-BF < 3: evidence is positive.
■ If log-BF > 3: evidence is strong.

Summary of comparisons for 11 series:

■ MS versus CP: 9 "> 3" and 2 ∈ (1, 3).
■ MS versus SPLINE: 5 "> 3", 4 ∈ (1, 3), and 2 ∈ (−3,−1).
■ CP versus SPLINE: 5 "> 3", 2 "< −3", 3 ∈ (−3,−1) and 1
∈ (−1, 0).
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Efficiency of PMCMC over BPR

■ BDR: states sampled jointly by PMCMC.
BPR: states sampled one at a time (Gibbs for states).

■ Efficiency measured by the effective computing time needed
to obtain one new "independent" draw:

(time for N posterior draws × AC time) / N .

This is computed
- for each break date (CP) or
- number of observations in a regime (MS),
then taking the maximum value.

AC time (autocorrelation time): 1 +
∑

i |ρi|

where ρi is the autocorrelation of order i of the posterior
draws.
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Autocorrelation times for best models

CP-GARCH simulated data

Break CP-GARCH MS-GARCH
3 regimes 3 regimes

BPR PMCMC BPR PMCMC
1 434.63 1.08 461.23 1.53
2 65.491 1.17 430.15 1.45

S&P 500 data

Break CP-GARCH MS-GARCH
3 regimes 2 regimes

BPR PMCMC BPR PMCMC
1 319.87 1.23 327.77 1.76
2 443.26 1.68 — —
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S&P 500 index: autocorrelations of draws
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S&P 500 index: autocorrelations of draws
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(c) MS Model-BPR-break 1
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(d) MS Model–PMCMC-break 1
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Effective computing times per posterior draw

CP-GARCH simulated data

Number of Regimes CP-GARCH MS-GARCH
PMCMC BPR PMCMC BPR

2 0.021 0.029 0.039 17.22
3 0.026 0.049 0.066 30.51
4 0.077 0.060 0.072 39.57

S&P500 data

Number of Regimes CP-GARCH MS-GARCH
PMCMC BPR PMCMC BPR

2 0.017 0.041 0.067 18.85
3 0.017 0.046 0.099 27.72
4 0.017 0.054 — —

Computation time in minutes per effective posterior draw.
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Number of particles

■ We tried different values of the number of particles used in
the PMCMC algorithm: N= 25, 50, 100, 150, 250, 500.

■ Typically, the AC times decrease much in the beginning
(when N increases until 100-250) then decrease very slowly
or become stable.

■ There is a trade-off between effective CPU time and N , and
we adopted safe values of N (150 for CP, 250 for MS).
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Current research

■ Forecast evaluations to compare models.

■ Extension to other GARCH models and other distributions
for the error term.

■ Extension to multivariate model (dynamic correlations).

■ Including the determination of the number of regimes in the
inference:

Dufays, A. (2012), Infinite-state Markov-switching for
dynamic volatility and correlation models,
CORE DP 2012/43 (November 2012)
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